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We discuss the infinite sequen¢éz;A;,A,,A5, ...) derived by Lee’s recurrence relation methigd
Math. Phys.24, 2512(1983]. We show that the sequence always converges for a nonvanishing real value of
z if there are infinitely manyA ;s which are smaller than some finite value. We also give an argument about the
possibility of multivaluedness of the infinite continued fractif®1063-651X%97)10503-7

PACS numbes): 02.70.Rw, 05.70.Ln

I. INTRODUCTION exist a set of orthogonalized basis vectffgt spanning the
Hilbert space which is realized by the proper inner product
It is well known that the transport behavior of a dynami- (A,B). Here we limit ourselves to the case tiats Hermit-
cal system is characterized by the relaxation mechanism irmn. Discussion for the non-Hermiticity & can be found in
the system, which can be studied in terms of the relaxatiofRef.[9]. It is well known that the basis s¢f,} satisfies the
function. The relaxation function is usually expanded in arecurrence relation
power series and/or continued fractié6F), and for real
calculation it is advisable that any relevant cutoff stage be froi=iLf +Af 1 (k=0), (2)
found or the power series expansion be modulated for the
sake of computational convenience. Most of the expansion ighereA,=1 and
limited to the power series expansion, the reason being that it
is quite difficult to find the cutoff stage in the CF. Futher- Ao (f.f0)
more, there have been some controversies over the conver- K (Fe_q,freoq)
gence of the expansidri] and, to our knowledge, the con-
vergence criterion has been introduced in the limited schemet is to be noted that herd, corresponds to thd? in the
especially in the CK2]. Mori scheme[10] and»2_, in the Lado-Memory-Parker rep-
The purpose of the present paper is to discuss the convefasentationf11], and thusA 22 may be called “the reciprocal
gence of the infinite CRICF). Among the many ICF repre- ime » Also note that the characteristic frequencies appear-
sentations introduced so far, here we are interested in the OR%y in Mori's and Lado, Memory, and Parker's representa-
introduced by Le€3], since it is easy to deal with math- +ion do not appear here, since we have assumedAhiat
ematically in the Hermitian case, and is quite frequently uti-pygrmitian, which makes all the basis vectors Hermitian.

lized in the condensed matter phys[@ls—S]. In Sec. Il, the It is also known that(t) defined in Eq.(1) can be ex-
ICF shall be reviewed briefly and the criteria of the CONVer-nanded in terms of the basis 4ét) as

gence shall be introduced for each case,dhe parameter of

the Laplace transform of the time-dependent dynamical func- o

tion. The case foz=1 shall be generalized to the case of A(t)= E a(t)fy, 4
z#1. Finally, the ICF neaz=0 shall also be discussed. k=0

Section Il shall be devoted to concluding remarks.

(k=1). 3

where{a,(t)} is a set of time-dependent real functions. With
the property of f,} kept in mind, and applying Eq2), we

Il. CONVERGENCE OF THE ICF obtain the recurrence relation fa,(t)} as

A. Lee’s ICF
First we review the recurrence relation introduced by Lee Apsq8s1(t)=— MJrak_l(t) (k=0). (5)
[3] as follows. For a dynamical variabke in a many body dt

system with HamiltoniamH, to which corresponds the Liou- o B )
ville operatorL, if LA=[H,A]#0, the time evolution in the NOte thata_,(t)=0 sincef _;=0. By applying the Laplace

Heisenberg representation is formally given by transform (), defined asg(z)=Lg(t)=[gexp(-zhg(t)dt
on Eqg.(5), we have

A(t)=exp(iLt)A 1) - -
1=7a,(2) +Aja4(2), (6)
in the unit system in whicth =1 whereA(0)=A. Let there
-1(2)=za(2) + Agr1ak+1(2)  (k=1).  (7)

*Fax.: 82-53-952-1739. Electronic address: Equations(6) and (7) can be combined to generate the fol-
choisd@knuhep.kyungpook.ac.kr lowing continued fraction representation fag(z):
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1 where f,=P,/P,.1, P, being thenth Fibonacci number;
f(z,41,45,...)= A, ®  P;=1P,=2P;=P;+P,,... P,=P,_»+P,_;, known
z+t ——— as
A,
Zt o 1+5 1-5

This result is called “Lee’s recurrence relation.”

B. Convergence forz=1

T)H“ﬁ‘”(T)n_T

(v5+2)

1
Pn:ﬁ

for n=2 and

Now we will examine the convergence of this scheme. lim Pn - \/5—1.
For that purpose we define a sequefitgf,, ...} with noe Pnit 2
- 1 (o 1 Thusf(1;1,1,...)=(J5—1)/2. Note that the convergence
7140 2 Ay T cannot be determined only h/s with large n. For ex-
1+ 1+A, ample, f(1;—-1/2,—1/4,—1/4,—1/4,...)diverges, while
f(A;=A,=A3=-..=-1/4)=2 converges. Therefore we
and, in general, should investigate the sequeng,f,, ...} in terms of
given sequendd,A,, .. .}.
1 However thed,, dependence of; is not easy to analyze.
fi= A, (9 This is because of the absence of a recurrence relation be-
1+ A tweenf; andf;, ;. In order to investigate the behavior of the
1+ 2 infinite sequence further, we defide=f;—f;_; and substi-
: tute this into Eq.(12). We then obtain
1+...
1+A,
. o A= |1+ -t (14)
WhenA,#0 for all n, this sequence becomes infinite. If "o+ 5n—1)( Sp_1+ 5n_2>’
lim,_.f, exists, thenf(1;A{,A,,...)=Ilim,_.f, and
f(1:A,A,, ...) issaid to be convergent. Conversely, if an and, letting
infinite sequence is given, we can buflfiL;A;,A,, ...).In
other words,A;,A,, ... can be expressed in terms of o= —n (15)
f1,f,, ... . From Eq.9) we obtain " St Sy’
1 we obtain
Al_f_ 1, (10)
! Ap=yn(1+yn-1). (16)
_fa(1-1y) For the sake of later convenience we &t=1 (this setting
27 (1-fy) T 1D corresponds tof _;=0), and from Eq.(15 we obtain
v1=—0,1(61+ 6y)=(1—f1)/f;=A;. Now we can solve
and, in general, Eq. (16), and express,, in terms ofA,:
(fn_fn—l)(fn—s_fn—z) - _ A“ 1
T T (s fea) o (32 A "
A,
wherefy=1. The above can be proved easily by the math- 1+--- 1+—A1

ematical induction for

A= (13

Here we introduce a few examples. Fgi=n+1, we have
A=-1/2, A,=—-1/4, and A,(n=3)=—-1/4; and thus
f(1;—3—3%—-4% ...)=lim,_.(n+1) diverges. For
Al:AZZASZ...:l, {fl,fz,...}:{%,%,g,g,...},

Note that the order ah’s in Eq. (17) differs from that in Eq.
(9). This difference makes the recurrence relati@f) pos-
sible.

There is a way to obtairy,, by a different method. Put
vn=Dnr/N,, and substitute this into Eq416). We obtain

D A N,_
e e T (18)
Nn Npo1+Dpog
or, in matrix form,
N, 1 1)\[Ny_
Do) 14, 0/, ) 19

Iterating Eq.(19), we obtain
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N, 1 1 1 1 1 1\(N; A<M for kel (the set of integejsand the number of ele-
D ): A olla ol " \a, ollD ments inl is infinite. From Eq.(22),
n n n—-1 2 1
(20)
5= Yn Yn-1 o Y1 (24)
whereN; andD; are fixed byA;=D1 /Ny _ Tty \ 1ty 1+y,
Now we considers,,. From Eq.(15) we obtain
and
= "n
n_l_,’_,ynb‘n*l' (21) M p
5n$ m , (25)
Therefores,, can be expressed as a producty,
Yo \[ —¥n-1 -y wherep is the sum of those elementslim{1,2,3,...,n}. It
On= Ty |\ Ty 1) (22)  is obvious that lim_,..p=+% and M/(1+M)<1. There-
" n-t ! fore lim,_,..4,= 0, and using the previous theorem we obtain
Finally, f; is given by the conclusion that lim,..f; exists. This theorem can be
, proved in a different and easier method. From &, when
_ J A's are real and positive for ali, we see thaf,;<f, and
fj—i:EO 5 - (23 f,>f, butfs>f,. Infact we obtairf ;1< foms 1< fomand

fom_o>fom>fom_1. Thus{f,,f5,f5, ...} is @ monotonic
Note thats,=f,=1 in Eq.(23). Therefore the condition increasing sequence, whifd,,f,,fs, ...} is @ monotonic
lim,_..5,=0 is a necessary condition for ljm.f; to be decreasing sequence. Furthermbsg_,<f,, for all natural
finite. In some special cases this condition becomes a necesumbersn andm. From the fact that a monotonic increasing
sary and sufficient condition. We now state this in theorem 1sequence with a upper bound or a monotonic decreasing se-
Theorem 11f A/s are real and\,,>0 for all n, the con-  quence with a lower bound always converges, we can let
dition lim,_,..8,=0 is a necessary and sufficient condition
for lim;_..f; to be finite. . an) [«
Proof. If As are all positive,y,s are also positive from Lnl B, \pB
Eq. (17). Therefored,,8,,85, ... form an alternating se-
guence. Furthermore, from E@1) we sed §,|<|d,-4| and
|84],]2|,| 85, ... form a monotonic decreasing sequence
Consequently lim...f;=2,_," 8, converges, if and only if
lim,_..5,=0 due to the Leibnitz criteriopl2].

, (26)

wherea,=f,, and B8,=f,,_,. We also havex=8. From
Eq. (12) we have

(am=Bm)(Bm-1—am-1)

At this point it may seem that for the cases whifs are Apm=7—"— — (27
all positive lim_,..f; always converges. This is not true be- (am= am-1)(Bm= Bm-1)
cause the condition lim,..6,=0 may not be satisfied. Let d
us give an example where ljm..5,=0 is not satisfied. If an
A/s are given as
ns e o= Br)(Bria=an) o8
A1=3, A,=8, A3=33 2 (am— am-1) (Bmi1— Bm)”
and Now suppose

Apm=(4m2—4m)(4m?—1) a#B. (29

Aomi1=(4m?+6m+1)(4m?>—2m—1), m=2, o
Then from Eqgs(27) and(28) we obtain lim,_,.,A,,,=c and
the corresponding infinite sequence is found to be im0 oms1=02. Thus lim,_.A,=, and for our given

numberM there exists a natural numbhrsuch that

_ 1 17 1 _ 25

1 3 —
fi=2, fo=1, fs=z f4=z, fs=3%, fe=3%, ...,

A >M (30)
which can be summarized ad,,=3%+(1/12n) and
fon y=1—(1A2) for n=1. Thus lim_.|&)|=1, for n=N. I—!ov_ve_ver, this contra,d|cts t_he given condition that
there are infinite number oA/s which satisfy Eq.(30).
Therefore, our suppositiof29) was wrong, and we obtain
Iimj_maj=a=ﬁ.

and lim_,.f; does not exist. However, if some restrictions
are imposed or\;s, we may satisfy lig_,..8,=0. We state
this in the next theorem.
Theorem 2If A/s are real and positive for afi, and if
there are infinite number aoh,s smaller than some finite C. Convergence forz#1
value, then lim_.f; exists. Now let us see the dependence of(z;A;,A,,As,- - )
Proof. Consideré, and assume there are infinite number in Eq. (8). Here we define the corresponding sequence
of Ays smaller than a finite number, s&f. More precisely  f;(z) as follows. Assuming+0,
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1
fi(z2)= Ay fZ(Z):—Al’ oo (3D
z+ — z+
z A,
z+ —
z
and, in general,
fi(z)= ! 32
()= » (32
z+ 1
7+ z
Z+ - —AJ
z+ —
z
As before, we definé(z;A,,A,,A3, ...) through
f(z;A1,45,45, ...)=lim;__f(2). (33

Thus if lim;_,..f;(z) exists for a given value of, we say
f(z;A1,A5,A5, .. .) isconvergent for that value a When

z=1, we go back to the previous case. Before going further,

we first observe that

. 3 1 1 34
J'(Z)_zl A,1Z? (34
* A, 17
1+ -
S
Therefore we can let
1~
fj(Z):Efj(Z), (39

where f;(z) is equal tof; in Eq. (9) except thatA, is re-
placed byA,/z?. From Eq.(34) we see that;(z) is an odd
function of z. Therefore f(z;A{,A5,A3, ...) defined
through Eq.(33) is also an odd function of and satisfies

1
f(Z:A1 82,43, .. ) =51(1504(2),45(2),A5(2), .. ),
(36)

where

An
An(2)=—7. (37

Now we restrict ourselves to the case wheiie a nonva-
nishing real number and, as before,s are real and positive

for all n. Note that for nonvanishing rea) A ,(z)>0. There-

fore the convergence df(z;A;,A,,A5, .. .) isdetermined Where we

by the convergence df(1;A(z),A,(2),A3(2), . ..) which
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Proof. From Eq.(32),

1
f(Z;Al,Az,A3, . .)=Ef(l;Al/22,A2/22,A3/22, . .),
(39)

and if there exists a finite numbef which is an upper

bound of infinitely manyA;s, thenM/z? is an upper bound

of infinitely many (A,/z%)’s. Thus, from theorem 2,

f(1;A,/22,A,17%,A517%, . ..) is convergent, and conse-
quentlyf(z;A1,A,,A3, ...) isalso convergent. This com-
pletes the proof.

There are several cases which fall into this category. For
example, the Laplace transformed time correlation function
of the momentum of the impurity particle in an extended
Rubin’s model[13] is found to be

1
)\Z,U,ZwE/Z
wrolld
w?il4
2t sz/4
Z+

Eoo(Z) =Z+
(39

zZ+ .

where\,u,w; are some characteristic parameters. Here all
Als are bounded from above, arfly(z) converges for all
real z except a possible discontinuity at=0. Another ex-
ample with a similar structure is found in the Hubbard model
[14,15 where the electron correlation function turns out to
be

— 1
‘Do(2)=w (40)
Zt g7
z+ Z+"-.

HereB is some characteristic parameter of this model.
There are many examples wheXg=na with some fixed
positive number. Among them are a one-dimensionaY
model of quantum spin chaing,16], Gaussian spectrum
[6,15], spin van der Waals mod¢V,8], and so on. In this
case the condition of theorem 3 is not satisfied. Let us check
the convergence df(1;A;,A,,A3, ...)with A,=na. First
we note thaty,<A, from Eq. (17). Thus

we have so far discussed. Thus we have the following thediMn—{n . In order to do that we use

rem.
Theorem 3If A/s are real and positive for afi, and if

there are an infinite number df; s smaller than some finite
value, thenf(z;A;,A,,A5,---) is convergent for nonvan-

ishing realz.

Yol (1+yn)<An/(1+Ay), (41)
and this implies
|6al<n, (42)
defined Z,=(An(1+A))(AL-1)/
(1+A_1) - (AL /(A+AYD). Let us evaluate
m m m
> <[] (1+f,)=<exp > fn), (43
n=1 n=1 n=1

which holds forf,=0. If we letf,=1/A,, we obtain



3680 JO, LEE, KIM, AND CHOI 55

o)

lim ¢ t=11

n—o n=1

whenz>0, and

1 ! 44
+A—n, (44)

-z—\z°+4
f(z;l,l,],...)=—2 )

and this satisfies

= 4 whenz<0. If z is a complex number, the functioyiz?+ 4
> —<limgt. (457  becomes double valued. To make the function single valued
e A Y we should introduce two branch points at*+2i and
branch cuts starting from these points. Once branch cuts are
The left hand side of Eq(45) diverges whem\, is substi- fixed, then the function becomes single valued and discon-
tuted withne . Thus we obtain lim_..{,=0, and conse- tinuous along the branch cuts. Our procedure using an infi-
quently  lim,_..6,=0. Therefore when A,=nea, nite sequence to calculate an infinite continued fract4s)
f(1;A4,A5,A3,...) converges. The convergence of naturally introduces branch cuts. We do not know the loca-
f(z;A1,A5,Az, .. .) for nonvanishing reat follows auto-  tion of branch cuts. However we know for sure that one of
matically becausd(1;A,(z),A,(z),A3(2), ...) converges. the branch cuts passes through the origin. This is because
In order to prove the convergence of lim, 4+f(z1,1,1...)=1, while lim,_,-f(z;1,1,...)

f(1;A1(2),A5(2),A5(2), .. .), we just changer into a/z?. =—1. The location of branch cuts may be clarified if we
analyze (49) for all complex numbers. Therefore, from

D. ICF near z=0 example (47) we conclude that whenever
lim,_o+f(z;A1,A5,A3, ...) is notzero, the equation for

Finally let us discuss about the behaviour of
f(z;A1,A5,A5, ...) aroundz=0. Our procedure to obtain
f(z;A1,A5,A5, .. .) through Eq.(33) does not allow us to
let z=0. Instead we take the Ilimitz—0. Because

f(z;A1,A5,A3, ...) mayhave some more solutions other
thanf(z;Aq,A5,A5, .. .) itself.

As an example, we now consider the Rubin model studied
by Lee, Florencio, and Hon@l7]. We consider a one-

f(z:A1,42,45, ...} is an oddunction ofz, we expect dimensional harmonic oscillator chain with spring constant
lim f(z;A1,A5,A5, ...)=— lim f(z;A1,A5,Ag, ...). x and massn. In the Rubin model, one of the particles is
700" ,0™ replaced by an impurity of mass,. It was shown that the

(46) Laplace transform of Po(t) Po)/{P3), where Py(t) is the
momentum of the tagged masm), at time t and

ThL_‘S if lim;_o+1(z,41,45,45, ...) is not zero, then Po=Po(0) and() is the classical ensemble average, can be
f(z,A1,42,43, .. .) is notcontinuous az=1. Here a natu- written as an infinite continued fraction
ral question arises. Which value of the two, either plus value
or minus, should be taken d$z=0;A;,A,,A3,...)? In =(Po(t)Po) . 1
order to answer this question, let us consider the following JO We Zdt=w (51)
equation: 0 2+ —— -
K
g*+2g=1, (47) Sy
This equation can be written as where\ =m/m,. For simplicity we consider the case when
(2t 48 N=1. The right hand side of E¢51) with A=1, which we
9=1/(z+9), (48) now define to be (z), converges for real and positizedue
and the formal solution to this equation is to our theorem 3. It can be shown easily that
1 fg)= 1 1 -
g—f(Z,l,l,l, .. )— 1 (49) (Z)_ 2)\[{/4 - \/22+—,uzy ( )
z+ — 2+ ————
1 N Kl4
Z+z+’-. z 7
On the other hand, the solutions of E49) can be obtained Whereu?=4x/m andz, in this expression, is real and posi-
easily. They are tive. From EQ.(52) we see that Py(t)Po)/(P2)=Jo(ut).
From the property of the Laplace transformation the left
Tz Nz +4 50 hand side of Eq(51) is analytic on the half-plane, where
9= 2 : (50 Rez>0. Consequently we can conclude that é(z) in Eq.

(52) can be considered as a function of comprewhich is
Therefore for eaclz there are two solutions fay. However, analytic on Re>0. We also know thaf(z) as an infinite
we can see easily that our procedure to calculate the infiniteontinued fraction is an odd function af Thereforef(z)
continued fraction in Eq(49) gives only one solution for should be analytic on Re<0. In order forf(z) to be ana-

f(z;1,1,1...). It isgiven by lytic on the region where Ret0, the branch cuts, starting
5 from the two branch pointstiuw, should run along the
Hz1Ad .. )= —z+\z°+4 imaginary axis. One of the branch cuts should pass through

2 ' the origin. Therefore we conclude that the two branch cuts,
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starting from =iu, run along the imaginary axis toward have shown that the ICF with,=na where a is positive
—io, so that two cuts cancel each other on the line fromconverges. We also have given an argument about the pos-
—iu to —ic. Note that this choice of the branch cuts certi- sibility of multivaluedness of the fraction.

fiesf(z) = — f(z) and alsof (z) = 1/(\Z%+ 1?) whenz is real The present criteria can be applied to other IJA8,11]
and positive. as far as the same conditions, including the hermiticity of the
dynamical valueA, are satisfied. The inner products usually
E. Concluding remarks adopted in real problems are not positive definite in general.

. o We claim that the convergence of the expansion in those
So far we have discussed the criteria for convergence of ;<5 should be checked prior to application.

the ICF introduced by Lee’s recurrence relation method. We
have shown that the ICE8) converges for all the real and
positive A/ s if there are infinitely manyA;s which are
smaller than some finite value. We have given some ex- This research has been supported by Korea Ministry of
amples which fall into this category. Using our theorems weEducation(BSRI 96-2405.
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