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Convergence criteria of an infinite continued fraction
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We discuss the infinite sequencef (z;D1 ,D2 ,D3 , . . . ) derived by Lee’s recurrence relation method@J.
Math. Phys.24, 2512~1983!#. We show that the sequence always converges for a nonvanishing real value of
z if there are infinitely manyDn8s which are smaller than some finite value. We also give an argument about the
possibility of multivaluedness of the infinite continued fraction.@S1063-651X~97!10503-7#

PACS number~s!: 02.70.Rw, 05.70.Ln
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I. INTRODUCTION

It is well known that the transport behavior of a dynam
cal system is characterized by the relaxation mechanism
the system, which can be studied in terms of the relaxa
function. The relaxation function is usually expanded in
power series and/or continued fraction~CF!, and for real
calculation it is advisable that any relevant cutoff stage
found or the power series expansion be modulated for
sake of computational convenience. Most of the expansio
limited to the power series expansion, the reason being th
is quite difficult to find the cutoff stage in the CF. Futhe
more, there have been some controversies over the con
gence of the expansion@1# and, to our knowledge, the con
vergence criterion has been introduced in the limited sche
especially in the CF@2#.

The purpose of the present paper is to discuss the con
gence of the infinite CF~ICF!. Among the many ICF repre
sentations introduced so far, here we are interested in the
introduced by Lee@3#, since it is easy to deal with math
ematically in the Hermitian case, and is quite frequently u
lized in the condensed matter physics@4–8#. In Sec. II, the
ICF shall be reviewed briefly and the criteria of the conv
gence shall be introduced for each case ofz, the parameter of
the Laplace transform of the time-dependent dynamical fu
tion. The case forz51 shall be generalized to the case
zÞ1. Finally, the ICF nearz50 shall also be discussed
Section III shall be devoted to concluding remarks.

II. CONVERGENCE OF THE ICF

A. Lee’s ICF

First we review the recurrence relation introduced by L
@3# as follows. For a dynamical variableA in a many body
system with HamiltonianH, to which corresponds the Liou
ville operatorL, if LA5@H,A#Þ0, the time evolution in the
Heisenberg representation is formally given by

A~ t !5exp~ iLt !A ~1!

in the unit system in which\51 whereA(0)5A. Let there
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exist a set of orthogonalized basis vectors$ f k% spanning the
Hilbert space which is realized by the proper inner prod
(A,B). Here we limit ourselves to the case thatA is Hermit-
ian. Discussion for the non-Hermiticity ofA can be found in
Ref. @9#. It is well known that the basis set$ f k% satisfies the
recurrence relation

f k115 iL f k1Dkf k21 ~k>0!, ~2!

whereD051 and

Dk5
~ f k , f k!

~ f k21 , f k21!
~k>1!. ~3!

It is to be noted that hereDk corresponds to theDk
2 in the

Mori scheme@10# andnk21
2 in the Lado-Memory-Parker rep

resentation@11#, and thusDk
1/2 may be called ‘‘the reciproca

time.’’ Also note that the characteristic frequencies appe
ing in Mori’s and Lado, Memory, and Parker’s represen
tion do not appear here, since we have assumed thatA is
Hermitian, which makes all the basis vectors Hermitian.

It is also known thatA(t) defined in Eq.~1! can be ex-
panded in terms of the basis set$ f k% as

A~ t !5 (
k50

`

ak~ t ! f k , ~4!

where$ak(t)% is a set of time-dependent real functions. Wi
the property of$ f k% kept in mind, and applying Eq.~2!, we
obtain the recurrence relation for$ak(t)% as

Dk11ak11~ t !52
dak~ t !

dt
1ak21~ t ! ~k>0!. ~5!

Note thata21(t)50 sincef2150. By applying the Laplace
transform (L), defined asg̃(z)[Lg(t)5*0

`exp(2zt)g(t)dt
on Eq.~5!, we have

15zão~z!1D1ã1~z!, ~6!

ãk21~z!5zãk~z!1Dk11ãk11~z! ~k>1!. ~7!

Equations~6! and ~7! can be combined to generate the fo
lowing continued fraction representation forão(z):
3676 © 1997 The American Physical Society



e

If

n

of

th

e

e

.
be-
e

t

55 3677CONVERGENCE CRITERIA OF AN INFINITE . . .
f ~z;D1 ,D2 , . . . !5
1

z1
D1

z1
D2

z1�

. ~8!

This result is called ‘‘Lee’s recurrence relation.’’

B. Convergence forz51

Now we will examine the convergence of this schem
For that purpose we define a sequence$ f 1 , f 2 , . . . % with

f 15
1

11D1
, f 25

1

11
D1

11D2

,•••

and, in general,

f j5
1

11
D1

11
D2

11•••

�

11D j

. ~9!

WhenDnÞ0 for all n, this sequence becomes infinite.
limn→` f n exists, then f (1;D1 ,D2 , . . . )5 limn→` f n, and
f (1;D1D2 , . . . ) is said to be convergent. Conversely, if a
infinite sequence is given, we can buildf (1;D1 ,D2 , . . . ). In
other words,D1 ,D2 , . . . can be expressed in terms
f 1 , f 2 , . . . . From Eq.~9! we obtain

D15
1

f 1
21, ~10!

D25
f 2~12 f 1!

f 1~12 f 2!
21, . . . , ~11!

and, in general,

Dn5
~ f n2 f n21!~ f n232 f n22!

~ f n2 f n22!~ f n212 f n23!
~n>3!, ~12!

where f 051. The above can be proved easily by the ma
ematical induction for

Dn5
Dn21

Dn22

Dn23

A
D1

1

f n
21

21

21

21

21

21. ~13!

Here we introduce a few examples. Forf n5n11, we have
D1521/2, D2521/4, and Dn(n>3)521/4; and thus
f (1;2 1

2,2
1
4,2

1
4, . . . )5 limn→`(n11) diverges. For

D15D25D35 . . .51, $ f 1 , f 2 , . . . %5$ 1
2 ,

2
3 ,

3
5 ,

5
8 , . . . %,
.

-

where f n5Pn /Pn11, Pn being thenth Fibonacci number;
P151,P252,P35P11P2 , . . . ,Pn5Pn221Pn21, known
as

Pn5
1

A5 F ~A512!S 11A5
2 D n22

1~A522!S 12A5
2 D n22G

for n>2 and

lim
n→`

Pn

Pn11
5

A521

2
.

Thus f (1;1,1, . . . )5(A521)/2. Note that the convergenc
cannot be determined only byDn8s with large n. For ex-
ample, f (1;21/2,21/4,21/4,21/4, . . . )diverges, while
f (D15D25D35•••521/4)52 converges. Therefore w
should investigate the sequence$ f 1 , f 2 , . . . % in terms of
given sequence$D1 ,D2 , . . . %.

However theDn dependence off j is not easy to analyze
This is because of the absence of a recurrence relation
tweenf j and f j11. In order to investigate the behavior of th
infinite sequence further, we defined j[ f j2 f j21 and substi-
tute this into Eq.~12!. We then obtain

Dn5S 2dn
dn1dn21

D S 11
2dn21

dn211dn22
D , ~14!

and, letting

gn[
2dn

dn1dn21
, ~15!

we obtain

Dn5gn~11gn21!. ~16!

For the sake of later convenience we letd051 ~this setting
corresponds tof2150), and from Eq. ~15! we obtain
g152d1 /(d11d0)5(12 f 1)/ f 15D1 . Now we can solve
Eq. ~16!, and expressgn in terms ofDn :

gn5
Dn

11
Dn21

11•••

D2

11D1

. ~17!

Note that the order ofD’s in Eq. ~17! differs from that in Eq.
~9!. This difference makes the recurrence relation~16! pos-
sible.

There is a way to obtaingn by a different method. Pu
gn5Dn /Nn , and substitute this into Eq.~16!. We obtain

Dn

Nn
5

DnNn21

Nn211Dn21
, ~18!

or, in matrix form,

S Nn

Dn
D 5S 1 1

Dn 0D S Nn21

Dn21
D . ~19!

Iterating Eq.~19!, we obtain
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S Nn

Dn
D 5S 1 1

Dn 0D S 1 1

Dn21 0D •••S 1 1

D2 0D S N1

D1
D

~20!

whereN1 andD1 are fixed byD15D1 /N1.
Now we considerdn . From Eq.~15! we obtain

dn5
2gn

11gn
dn21 . ~21!

Thereforedn can be expressed as a product ofg’s,

dn5S 2gn

11gn
D S 2gn21

11gn21
D •••S 2g1

11g1
D . ~22!

Finally, f j is given by

f j5(
i50

j

d i . ~23!

Note thatd05 f 051 in Eq. ~23!. Therefore the condition
limn→`dn50 is a necessary condition for limj→` f j to be
finite. In some special cases this condition becomes a ne
sary and sufficient condition. We now state this in theorem

Theorem 1: If Dn8s are real andDn.0 for all n, the con-
dition limn→`dn50 is a necessary and sufficient conditio
for lim j→` f j to be finite.

Proof: If Dn8s are all positive,gn8s are also positive from
Eq. ~17!. Therefored1 ,d2 ,d3 , . . . form an alternating se
quence. Furthermore, from Eq.~21! we seeudnu,udn21u and
ud1u,ud2u,ud3u, . . . form a monotonic decreasing sequen
Consequently limj→` f j5(n50

`dn converges, if and only if
limn→`dn50 due to the Leibnitz criterion@12#.

At this point it may seem that for the cases whenDn8s are
all positive limj→` f j always converges. This is not true b
cause the condition limn→`dn50 may not be satisfied. Le
us give an example where limn→`dn50 is not satisfied. If
Dn8s are given as

D153, D258, D3533

and

D2m5~4m224m!~4m221!

D2m115~4m216m11!~4m222m21!, m>2,

the corresponding infinite sequence is found to be

f 15
1
4 , f 25

3
4 , f 35

7
24 , f 45

17
24 , f 55

11
36 , f 65

25
36 , . . . ,

which can be summarized asf 2n5
2
31(1/12n) and

f 2n215
1
32(1/12n) for n>1. Thus limn→`udnu5

1
3 ,

and limj→` f j does not exist. However, if some restrictio
are imposed onDn8s, we may satisfy limn→`dn50. We state
this in the next theorem.

Theorem 2: If Dn8s are real and positive for alln, and if
there are infinite number ofDk8s smaller than some finite
value, then limj→` f j exists.

Proof: Considerdn and assume there are infinite numb
of Dk8s smaller than a finite number, sayM . More precisely
es-
.

.

Dk,M for kPI ~the set of integers! and the number of ele
ments inI is infinite. From Eq.~22!,

dn5S gn

11gn
D S gn21

11gn21
D •••S g1

11g1
D ~24!

and

dn<S M

11M D p, ~25!

wherep is the sum of those elements inIù$1,2,3,. . . ,n%. It
is obvious that limn→`p51` andM /(11M ),1. There-
fore limn→`dn50, and using the previous theorem we obta
the conclusion that limj→` f j exists. This theorem can b
proved in a different and easier method. From Eq.~9!, when
Dn8s are real and positive for alln, we see thatf 1, f 2 and
f 2. f 3 but f 3. f 1. In fact we obtainf 2m21, f 2m11, f 2m and
f 2m22. f 2m. f 2m21. Thus $ f 1 , f 3 , f 5 , . . . % is a monotonic
increasing sequence, while$ f 2 , f 4 , f 6 , . . . % is a monotonic
decreasing sequence. Furthermoref 2m21, f 2n for all natural
numbersn andm. From the fact that a monotonic increasin
sequence with a upper bound or a monotonic decreasing
quence with a lower bound always converges, we can le

lim
n→`

S an

bn
D 5S a

b D , ~26!

wherean5 f 2n andbn5 f 2n21. We also havea>b. From
Eq. ~12! we have

D2m5
~am2bm!~bm212am21!

~am2am21!~bm2bm21!
~27!

and

D2m115
~am212bm!~bm112am!

~am2am21!~bm112bm!
. ~28!

Now suppose

aÞb. ~29!

Then from Eqs.~27! and~28! we obtain limm→`D2m5` and
limm→`D2m115`. Thus limn→`Dn5`, and for our given
numberM there exists a natural numberN such that

Dn.M ~30!

for n>N. However, this contradicts the given condition th
there are infinite number ofDn8s which satisfy Eq.~30!.
Therefore, our supposition~29! was wrong, and we obtain
lim j→`aj5a5b.

C. Convergence forzÞ1

Now let us see thez dependence off (z;D1 ,D2 ,D3 ,•••)
in Eq. ~8!. Here we define the corresponding sequen
f j (z) as follows. AssumingzÞ0,
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f 1~z!5
1

z1
D1

z

, f 2~z!5
1

z1
D1

z1
D2

z

, . . . , ~31!

and, in general,

f j~z!5
1

z1
D1

z1
D2

z1•••

�

z1
D j

z

. ~32!

As before, we definef (z;D1 ,D2 ,D3 , . . . ) through

f ~z;D1 ,D2 ,D3 , . . . !5 lim j→` f j~z!. ~33!

Thus if limj→` f j (z) exists for a given value ofz, we say
f (z;D1 ,D2 ,D3 , . . . ) isconvergent for that value ofz. When
z51, we go back to the previous case. Before going furth
we first observe that

f j~z!5
1

z

1

11
D1 /z

2

11
D2 /z

2

11•••

�

11D j /z
2

. ~34!

Therefore we can let

f j~z!5
1

z
f̃ j~z!, ~35!

where f̃ j (z) is equal tof j in Eq. ~9! except thatDn is re-
placed byDn /z

2. From Eq.~34! we see thatf j (z) is an odd
function of z. Therefore f (z;D1 ,D2 ,D3 , . . . ) defined
through Eq.~33! is also an odd function ofz and satisfies

f ~z;D1 ,D2 ,D3 , . . . !5
1

z
f „1;D1~z!,D2~z!,D3~z!, . . . …,

~36!

where

Dn~z!5
Dn

z2
. ~37!

Now we restrict ourselves to the case wherez is a nonva-
nishing real number and, as before,Dn8s are real and positive
for all n. Note that for nonvanishing realz, Dn(z).0. There-
fore the convergence off (z;D1 ,D2 ,D3 , . . . ) is determined
by the convergence off „1;D1(z),D2(z),D3(z), . . . … which
we have so far discussed. Thus we have the following th
rem.

Theorem 3: If Dn8s are real and positive for alln, and if
there are an infinite number ofDk8s smaller than some finite
value, thenf (z;D1 ,D2 ,D3 ,•••) is convergent for nonvan
ishing realz.
r,

o-

Proof: From Eq.~31!,

f ~z;D1 ,D2 ,D3 , . . . !5
1

z
f ~1;D1 /z

2,D2/z
2,D3 /z

2, . . . !,

~38!

and if there exists a finite numberM which is an upper
bound of infinitely manyDn8s, thenM /z2 is an upper bound
of infinitely many (Dn /z

2)8s. Thus, from theorem 2,
f (1;D1 /z

2,D2 /z
2,D3 /z

2, . . . ) is convergent, and conse
quently f (z;D1 ,D2 ,D3 , . . . ) is also convergent. This com
pletes the proof.

There are several cases which fall into this category.
example, the Laplace transformed time correlation funct
of the momentum of the impurity particle in an extend
Rubin’s model@13# is found to be

J00~z!5z1
1

l2m2vL
2/2

z1
m2vL

2/4

z1
vL
2/4

z1
vL
2/4

z1�

. ~39!

wherel,m,vL are some characteristic parameters. Here
Dn8s are bounded from above, andJ00(z) converges for all
real z except a possible discontinuity atz50. Another ex-
ample with a similar structure is found in the Hubbard mod
@14,15# where the electron correlation function turns out
be

F 0̂~z!5
1

z1
B2/4

z1
B2/4

z1�

. ~40!

HereB is some characteristic parameter of this model.
There are many examples whereDn5na with some fixed

positive numbera. Among them are a one-dimensionalXY
model of quantum spin chains@5,16#, Gaussian spectrum
@6,15#, spin van der Waals model@7,8#, and so on. In this
case the condition of theorem 3 is not satisfied. Let us ch
the convergence off (1;D1 ,D2 ,D3 , . . . ) with Dn5na. First
we note thatgn<Dn from Eq. ~17!. Thus

gn /~11gn!<Dn /~11Dn!, ~41!

and this implies

udnu<zn , ~42!

where we defined zn5„Dn(11Dn)…„(Dn21)/
(11Dn21)…•••„D1 /(11D1)…. Let us evaluate
limn→`zn . In order to do that we use

(
n51

m

f n< )
n51

m

~11 f n!<expS (
n51

m

f nD , ~43!

which holds forf n>0. If we let f n51/Dn , we obtain
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lim
n→`

zn
215 )

n51

` S 11
1

Dn
D , ~44!

and this satisfies

(
n51

`
1

Dn
< lim

n→`

zn
21 . ~45!

The left hand side of Eq.~45! diverges whenDn is substi-
tuted with na . Thus we obtain limn→`zn50, and conse-
quently limn→`dn50. Therefore when Dn5na,
f (1;D1 ,D2 ,D3 , . . . ) converges. The convergence
f (z;D1 ,D2 ,D3 , . . . ) for nonvanishing realz follows auto-
matically becausef „1;D1(z),D2(z),D3(z), . . . … converges.
In order to prove the convergence
f „1;D1(z),D2(z),D3(z), . . . …, we just changea into a/z2.

D. ICF near z50

Finally let us discuss about the behaviour
f (z;D1 ,D2 ,D3 , . . . ) aroundz50. Our procedure to obtain
f (z;D1 ,D2 ,D3 , . . . ) through Eq.~33! does not allow us to
let z50. Instead we take the limitz→0. Because
f (z;D1 ,D2 ,D3 , . . . ) is an oddfunction of z, we expect

lim
z→01

f ~z;D1 ,D2 ,D3 , . . . !52 lim
z→02

f ~z;D1 ,D2 ,D3 , . . . !.

~46!

Thus if limz→01 f (z;D1 ,D2 ,D3 , . . . ) is not zero, then
f (z;D1 ,D2 ,D3 , . . . ) is notcontinuous atz51. Here a natu-
ral question arises. Which value of the two, either plus va
or minus, should be taken asf (z50;D1 ,D2 ,D3 , . . . )? In
order to answer this question, let us consider the follow
equation:

g21zg51. ~47!

This equation can be written as

g51/~z1g!, ~48!

and the formal solution to this equation is

g5 f ~z;1,1,1, . . .!5
1

z1
1

z1
1

z1�

. ~49!

On the other hand, the solutions of Eq.~49! can be obtained
easily. They are

g5
2z6Az214

2
. ~50!

Therefore for eachz there are two solutions forg. However,
we can see easily that our procedure to calculate the infi
continued fraction in Eq.~49! gives only one solution for
f (z;1,1,1, . . . ). It is given by

f ~z;1,1,1, . . . !5
2z1Az214

2
,

e

g

ite

whenz.0, and

f ~z;1,1,1, . . . !5
2z2Az214

2
,

whenz,0. If z is a complex number, the functionAz214
becomes double valued. To make the function single val
we should introduce two branch points atz562i and
branch cuts starting from these points. Once branch cuts
fixed, then the function becomes single valued and disc
tinuous along the branch cuts. Our procedure using an
nite sequence to calculate an infinite continued fraction~49!
naturally introduces branch cuts. We do not know the lo
tion of branch cuts. However we know for sure that one
the branch cuts passes through the origin. This is beca
limz→01 f (z;1,1,1, . . . )51, while limz→02 f (z;1,1,1, . . . )
521. The location of branch cuts may be clarified if w
analyze ~49! for all complex numbersz. Therefore, from
example ~47! we conclude that wheneve
limz→01 f (z;D1 ,D2 ,D3 , . . . ) is not zero, the equation for
f (z;D1 ,D2 ,D3 , . . . ) mayhave some more solutions othe
than f (z;D1 ,D2 ,D3 , . . . ) itself.

As an example, we now consider the Rubin model stud
by Lee, Florencio, and Hong@17#. We consider a one-
dimensional harmonic oscillator chain with spring consta
k and massm. In the Rubin model, one of the particles
replaced by an impurity of massm0. It was shown that the
Laplace transform of̂ P0(t)P0&/^P0

2&, whereP0(t) is the
momentum of the tagged massm0 at time t and
P05P0(0) and^ & is the classical ensemble average, can
written as an infinite continued fraction

E
0

`^P0~ t !P0&

^P0
2&

e2ztdt5
1

z1
2lk/4

z1
k/4

z1�

~51!

wherel5m/m0. For simplicity we consider the case whe
l51. The right hand side of Eq.~51! with l51, which we
now define to bef (z), converges for real and positivez due
to our theorem 3. It can be shown easily that

f ~z![
1

z1
2lk/4

z1
k/4

z1�

5
1

Az21m2
, ~52!

wherem254k/m andz, in this expression, is real and pos
tive. From Eq.~52! we see that̂ P0(t)P0&/^P0

2&5J0(mt).
From the property of the Laplace transformation the l
hand side of Eq.~51! is analytic on the half-plane, wher
Rez.0. Consequently we can conclude that ourf (z) in Eq.
~52! can be considered as a function of complexz which is
analytic on Rez.0. We also know thatf (z) as an infinite
continued fraction is an odd function ofz. Thereforef (z)
should be analytic on Rez,0. In order for f (z) to be ana-
lytic on the region where RezÞ0, the branch cuts, startin
from the two branch points6 im, should run along the
imaginary axis. One of the branch cuts should pass thro
the origin. Therefore we conclude that the two branch cu
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starting from6 im, run along the imaginary axis towar
2 i`, so that two cuts cancel each other on the line fr
2 im to 2 i`. Note that this choice of the branch cuts cer
fies f (z)52 f (z) and alsof (z)51/(Az21m2) whenz is real
and positive.

E. Concluding remarks

So far we have discussed the criteria for convergence
the ICF introduced by Lee’s recurrence relation method.
have shown that the ICF~8! converges for all the real an
positive Dn8s if there are infinitely manyDn8s which are
smaller than some finite value. We have given some
amples which fall into this category. Using our theorems
d

of
e

x-
e

have shown that the ICF withDn5na wherea is positive
converges. We also have given an argument about the
sibility of multivaluedness of the fraction.

The present criteria can be applied to other ICF’s@10,11#
as far as the same conditions, including the hermiticity of
dynamical valueA, are satisfied. The inner products usua
adopted in real problems are not positive definite in gene
We claim that the convergence of the expansion in th
cases should be checked prior to application.
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